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The equivalence statements for quantum scalar field vacuum states that have
been used for the thermal-like Hawking effect and Unruh effect are surveyed.
An important ingredient in this framework is the concept of a vacuum field noise
spectrum, by which one can obtain information about the curvature invariants of
classical worldlines (relativistic classical trajectories). It is argued, in the spirit
of the free-fall-type universality, that the preferred quantum field vacua with
respect to accelerated worldlines should be chosen from the class of all those
possessing stationary spectra for their quantum fluctuations. For scalar quantum
field vacua there are six stationary cases, as shown by Letaw some time ago,
and reviewed here. However, nonstationary vacuum noises can be treated by a
few mathematical methods that are mentioned as well. Since the information
about the kinematical curvature invariants of the worldlines is of radiometric
origin, suggestions are given on the more useful application of such an academic
formalism to radiation and beam radiometric standards for high-energy
accelerators and in astrophysics. We conclude with a look at related axiomatic
quantum field topics and some other recent work.

1. INTRODUCTION

The legendary gedanken discovery of classical free-fall universality by
Galilei [1]2 is an exciting textbook story (the first actual experiments were
done in June 1710 at St. Paul’s in London by Newton). Starting with the
neutron beam experiments of Dabbs et al. [3] in 1965, nonrelativistic quantum
free falls have also been of much interest. ‘Free falls’ of quantum wavefunc-
tions (wavepackets), i.e., Schrödinger solutions in a homogeneous gravita-
tional field, are mass dependent and therefore closer to Aristotle’s fall. Thus,
a resumption of the quest for the universality features of free-fall-type phe-

1 Instituto de Fisica, Universidad de Guanajuato, Apdo Postal E-143, Leon, Mexico.
2 For an interesting paper on Aristotle’s ideas on free fall, where one can see why he was half
right irrespective of the medium, see ref. 2.
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nomena in the quantum realm has emerged in recent years. Moreover, interest-
ing insights into the problem of relativistic quantum field inertia have been
gained as a consequence of the Hawking effect [4, 5] and the Unruh effect [6].
This helped substantially to display the ‘imprints’ of gravitation in relativistic
quantum physics [7]. Natural questions in this context which I take up in
this work are, (i) What does ‘free fall’ really mean in relativistic quantum
field theories? (ii) How should one formulate equivalence principles (EPs)
for quantum field state? (iii) What are the restrictions on quantum field states
imposed by the EPs?

The method of quantum detectors is very useful for the understanding
of quantum field inertial features. New ways of thinking of quantum fluctua-
tions have been promoted and new pictures of vacuum states have been
provided, of which the landmark one is the heat bath interpretation of the
Minkowski vacuum state from the point of view of a uniformly accelerating
noninertial quantum detector. Essentially, simple, not to say toy, model parti-
cles (just two energy levels separated by E and a monopole form factor),
commonly known as Unruh–DeWitt (UDW) quantum detectors of uniform,
one-dimensional proper acceleration a in Minkowski vacuum, are immersed
in a scalar quantum field ‘heat’ bath of temperature

Ta 5
"

2pck
? a (1)

where " is Planck’s constant barred c is the speed of light in vacuum, and
k is Boltzmann’s constant. A formula of this type was first obtained by
Hawking [4] in a paper in 1974 black hole explosions, then in 1975 by Davies
[8] in a moving-mirror model, and finally by Unruh in 1976 [6]. For first-order
corrections to this formula see Reznik [9]. This so-called Unruh temperature is
proportional to the lineal uniform acceleration, and the scale of such noniner-
tial quantum field ‘heat’ effects with respect to the acceleration is fixed, by
the numerical values of universal constants, to the very low value of 4 3
10223 in cgs units. In other words, the huge acceleration of 2.5 3 1022 cm/
s2 can produce a blackbody spectrum of only 1 K. In the (radial) case of
Schwarzschild black holes, using the surface gravity k 5 c4/4GM instead of
a, one immediately gets the formula for their Hawking temperature Tk. In a
more physical picture, the Unruh quantum field heat reservoir is filled with the
so-called Rindler photons (Rindler quasiparticles), and therefore the quantum
transitions are to be described as absorptions or emissions of the Rindler
reservoir ‘photons.’ Also recall that according to an idea popularized by
Smolin [10, 11], one can think of zero-point fluctuations, gravitation, and
inertia as the only three universal phenomena of nature. However, one may
also think of inertia as related to those peculiar collective quantum degrees
of freedom which are the vacuum expectation values (vev’s) of Higgs fields.



Relativistic Quantum Field Inertia 287

As we know, these vev’s do not follow from the fundamentals of quantum
theory. On the other hand, one can find papers claiming that inertia can be
assigned to a Lorentz-type force generated by electromagnetic zero-point
fields [12]. Moreover, one also has the well-known Rindler condensate con-
cept of Gerlach [13]. Amazingly, one can claim that there exist completely
coherent zero-point condensates, like the Rindler–Gerlach one, which entirely
mimic the Planck spectrum, without any renormalization, as the case is for
the Casimir effect.

In this work, I will stick to the standpoint based on the well-known
concept of vacuum field noise (VFN) [14]—or vacuum excitation spectrum
from the point of view of quantum UDW detectors—because in my opinion
this not only provides a clear origin of the relativistic thermal effects, it
avoids at the same time uncertain generalizations, and also helps one of my
purposes here. This sheds light on the connection between the stationary
VFNs and the equivalence principle statements for scalar field theories.

2. SURVEY OF QUANTUM DETECTOR EQUIVALENCE
PRINCIPLES

The Unruh picture can be used for interpreting Hawking radiation in
Minkowski space [15]. In order to do that, one has to consider the generaliza-
tion(s) of the EPs to quantum field processes. A number of authors have
discussed this important issue with various degree of detail, and with some
debate [17–28]. Nikishov and Ritus [29] raised the following objection to
the heat bath concept. Since absorption and emission processes occur in finite
space-time regions, the application of the local principle of equivalence
requires a constant acceleration over those regions. However, the space-time
extension of the quantum processes are in general of the order of inverse
acceleration. In Minkowski space it is not possible to create homogeneous
and uniform gravitational fields having accelerations of the order of a in
spacetime domains of the order of the inverse of a.

Grishchuk et al. [17] and Ginzburg and Frolov [19] wrote extensive
reviews on the formulations of a quantum field equivalence principle (QFEP).
One should focus on the response functions of quantum detectors, in particular,
the UDW two-level monopole detector in stationary motion. In the asymptotic
limit this response function is the integral of the quantum noise power spec-
trum. Or, since the derivative of the response function is the quantum transition
rate, the latter is just the measure of the vacuum power spectrum along the
chosen trajectory (worldline) and in the chosen initial (vacuum) state. This
is valid only in the asymptotic limit and more realistic cases require calcula-
tions in finite time intervals [30]. Denoting by RM,I, RR,A, RM,A the detection
rates with the first subscript corresponding to the vacuum (either Minkowski
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or Rindler) and the second subscript corresponding to either inertial or acceler-
ating worldline, one can find for the UDW detector in a scalar vacuum that RM,I

5 RR,A, expressing the dissipationless character of the vacuum fluctuations in
this case, and a thermal factor for RM,A leading to the Unruh heat bath concept.
In the case of a uniform gravitational field, the candidates for the vacuum
state are the Hartle–Hawking (HH) and the Boulware (B) vacua. The HH
vacuum is defined by choosing incoming modes to be those of positive
frequency with respect to the null coordinate on the future horizon and
outgoing modes as positive-frequency ones with respect to the null coordinate
on the past horizon, whereas the B vacuum has positive-frequency modes
with respect to the Killing vector, which makes the exterior region static.
For an ideal, uniform gravitational field the HH vacuum can be thought of
as the counterpart of the Minkowski vacuum, while the B vacuum is the
equivalent of the Rindler vacuum. Then, the QFEP can be formulated in one
of the following ways:

Quantum Detector-QFEP: HH–M Equivalence: (i) The detection rate
of a free-falling UDW detector in the HH vacuum is the same as that of an
inertial UDW detector in the M vacuum.

(ii) A UDW detector at rest in the HH vacuum has the same DR as a
uniformly accelerated detector in the M vacuum.

Quantum Detector-QFEP: B–R Equivalence: (iii) A UDW detector at
rest in the B vacuum has the same detection rate as a uniformly accelerated
detector in the R vacuum.

(iv) A free-falling UDW detector in the B vacuum has the same detection
rate as an inertial detector in the R vacuum.

Let us present one more formulation, due to Kolbenstvedt [26]:

Quantum Detector-QFEP: Kolbenstvedt: A detector in a gravitational
field and an accelerated detector will behave in the same manner if they feel
equal forces and perceive radiation baths of identical temperature.

In principle, since the Planck spectrum is Lorentz invariant (and even
conformal invariant) its presence in equivalence statements is easy to accept
if one recalls that Einstein EP requires local Lorentz invariance. The linear
connection between ‘thermodynamic’ temperature and one-dimensional, uni-
form, proper acceleration, which is also valid in some important gravitational
contexts (Schwarzchild black holes, de Sitter cosmology), is indeed a funda-
mental relationship because it allows for an absolute meaning of quantum
field effects in such ideal noninertial frames as soon as one recognize thermo-
dynamic temperature as the only absolute, i.e., fully universal, energy-type
physical concept.



Relativistic Quantum Field Inertia 289

3. THE SIX TYPES OF STATIONARY SCALAR VFNs

In general, the scalar quantum field vacua are not stationary stochastic
processes (abbreviated SVES) for all types of classical trajectories on which
the UDW detector moves. Nevertheless, the lineal acceleration is not the
only case with that property, as was shown by Letaw [31, 32]3 who extended
Unruh’s considerations, obtaining six types of worldlines with SVES for UDW
detectors (SVES-1 to SVES-6, see below). These worldlines are solutions of
some generalized Frenet equations on which the condition of constant curva-
ture invariants is imposed, i.e., constant curvature k, torsion t, and hypertor-
sion n, respectively. Notice that one can employ other frames such as the
Newman–Penrose spinor formalism, as Unruh [34] did, but the Serret–Frenet
one is in overwhelming use throughout physics. The six stationary cases are
the following:

1. k 5 t 5 n 5 0 (inertial, uncurved worldlines). SVES-1 is a trivial
cubic spectrum

S1(E ) 5
E 3

4p2 (2)

i.e., as given by a vacuum of zero-point energy per mode E/2 and density
of states E 2/2p2.

2. k Þ 0, t 5 n 5 0 (hyperbolic worldlines). SVES-2 is Planckian,
allowing the interpretation of k/2p as ‘thermodynamic’ temperature. In the
dimensionless variable ek 5 E/k the vacuum spectrum reads

S2(ek) 5
e3

k

2p2(e2pek 2 1)
(3)

3. .k. , .t., n 5 0, r2 5 t2 2 k2 (helical worldlines). SVES-3 is an
analytic function corresponding to case 4 below only in the limit k À r,

S3(er) —→
k/r→`

S4(ek) (4)

Letaw plotted the numerical integral S3(er), where er 5 E/r for various values
of k/r.

4. k 5 t, n 5 0 (the spatially projected worldlines are the semicubic
parabolas y 5 (!2/3)kx3/2 containing a cusp where the direction of motion
is reversed). SVES-4 is analytic, and since there are two equal curvature
invariants, one can use the dimensionless energy variable ek,

3 For the nonrelativistic case see ref. 33.
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S4(ek) 5
e2

k

8p2!3
e22=3ek (5)

It is worth noting that S4 is rather close to the Wien-type spectrum SW }
e3 e2const.e.

5. .k. . .t., n 5 0, s2 5 k2 2 t2 [the spatially projected worldlines
are catenaries, i.e., curves of the type x 5 k cosh( y/t)]. In general, SVES-
5 cannot be found analytically. It is an intermediate case, which for t/s →
0 tends to SVES-2, whereas for t/s → ` it tends toward SVES-4,

S2(ek) ←—
0←t/s

S5(es) —→
t/s→`

S4(ek) (6)

6. n Þ 0 (rotating worldlines uniformly accelerated normal to their plane
of rotation). SVES-6 forms a two-parameter set of curves. These trajectories
are a superposition of the constant linearly accelerated motion and uniform
circular motion. The corresponding vacuum spectra have not been calculated
by Letaw even numerically.

Thus, only the hyperbolic worldlines having just one nonzero curvature
invariant allow for a Planckian SVES and for a strictly one-to-one mapping
between the curvature invariant k and the ‘thermodynamic’ temperature. On
the other hand, in the stationary cases it is possible to determine at least
approximately the curvature invariants, that is, the classical worldline on
which a quantum particle moves, from measurements of the vacuum noise
spectrum.

4. PREFERRED VACUA AND/OR HIGH-ENERGY
RADIOMETRIC STANDARDS

There is much interest in considering the magnetobremsstrahlung (i.e.,
not only synchrotron) radiation patterns at accelerators from the aforemen-
tioned perspective [35] at least since the work of Bell and collaborators
[36–38]. It is in this sense that a sufficiently general and acceptable statement
on the universal nature of the kinematical parameters occurring in a few
important quantum field model problems can be formulated as follows:

• There exist accelerating classical trajectories (worldlines) on which
moving ideal (two-level) quantum systems can detect the scalar vac-
uum environment as a stationary quantum field vacuum noise with
a spectrum directly related to the curvature invariants of the worldline,
thus allowing for a radiometric meaning of those invariants.

Although this may look like an extremely ideal (unrealistic) formulation
for accelerator radiometry, where the spectral photon flux formula of
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Schwinger [39] is very effective, recall that Hacyan and Sarmiento [40]
developed a formalism similar to the scalar case to calculate the vacuum
stress-energy tensor of the electromagnetic field in an arbitrarily moving
frame and applied it to a system in uniform rotation, providing formulas for
the energy density, Poynting flux, and stress of zero-point oscillations in such
a frame. Moreover, Mane [41] suggested the Poynting flux of Hacyan and
Sarmiento to be in fact synchrotron radiation when it is coupled to an electron.

Another important byproduct, and actually one of the proposals I put
forth in this paper, is the possibility to choose a class of preferred vacua of
the quantum world4 as all those having stationary vacuum noises with respect
to the classical (geometric) worldlines of constant curvature invariants
because in this case one may find some necessary attributes of universality in
the more general quantum field radiometric sense [44] in which the Planckian
Unruh thermal spectrum is included as a particularly important case. Of
course, much work remains to be done for a more “experimental” picture of
highly academic calculations in quantum field theory, but a careful look at
the literature shows that there are already definite steps in this direction
[45–51]. Notice that all the aforementioned scalar quantum field vacua look
extremely ideal from the experimental standpoint. Indeed, it is known that
only strong external fields can make the quantum electrodynamic vacuum
react and show its physical properties, becoming similar to a magnetized and
polarized medium, and only by such means can one learn about the physical
structure of the QED vacuum. Important results on the relationship between
the Schwinger mechanism and the Unruh effect have been reported in recent
work [52–61].

5. NONSTATIONARY VFNs

Though the nonstationary VFNs do not enter statements of equivalence
type, they are equally important. Since such noises have a time-dependent
spectral content, one needs joint time and frequency information, i.e., general-
izations of the power spectrum analysis such as tomographic processing [62]
and wavelet transform analysis [63; for review see ref. 64]. Alternatively,
since in the quantum detector method the vacuum autocorrelation functions
are the essential physical quantities, and since according to fluctuation-dissi-
pation theorem(s) (FDT) they are related to the linear (equilibrium) response
functions to an initial condition/vacuum, more FDT-type work, especially its
generalization to the out-of-equilibrium case [65], will be useful in this
framework. One can hope that effective temperature concepts can be intro-
duced following the reasoning already developed for systems with slow

4 For such a concept in a different context see refs. 42 and 43.
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dynamics (glasses) [66]. In fact, there is some progress due to Hu and Matacz
[67] in making more definite use of FDT for vacuum fluctuations. Very
recently, Gour and Sriramkumar [68] questioned if small particles exhibit
Brownian motion in the quantum vacuum and concluded that even though
the answer is in principle positive, the effect is extremely small and thus
very difficult to detect experimentally.

6. AXIOMATIC QFEPs

At the rigorous, axiomatic level, Hessling [69; see also 70, 71] published
further results on the algebraic quantum field equivalence principle (AQFEP)
due to Haag and collaborators. Hessling’s formulation is too technical to be
reproduced here. The difficulties are related to the rigorous formulation of
local position invariance, a requisite of equivalence, for the singular short-
distance behavior of quantum fields, and to the generalization to interacting
field theories. Various general statements of locality [72–74] for linear quan-
tum fields are important steps toward proper formulations of AQFEP. These
are nice, but technical results coming mainly from clear mathematical exposi-
tion involving algebraic-thermal states, namely the Kubo–Martin–Schwinger
states of Hadamard type. Hessling’s AQFEP formulation is based on the
notion of quantum states constant up to first order at an arbitrary spacetime
point, and means that for these states a certain scaling limit should exist, and
moreover a null-derivative condition with respect to a local inertial system
around that arbitrary point is to be fulfilled for all n-point functions. For
example, the vacuum state of the Klein–Gordon field in Minkowski space
with a suitable scaling function satisfies Hessling’s AQFEP. Using as a toy
model the asymptotically free f3 theory in six-dimensional Minkowski space,
Hessling showed that the derivative condition of his AQFEP is not satisfied
by this interacting quantum field theory, which perturbatively is similar to
quantum chromodynamics. This failing is due to the running coupling constant
that does not go smoothly to zero in the short-distance limit. If one takes
AQFEP or generalizations thereof as a sine qua non for physically acceptable
quantum field vacuum states, then one has at hand a useful selection guide
for even more complex vacua such as the Yang–Mills one [75] or those of
quantum gravity [76, 77].

Since the time–thermodynamics relation in general covariant theories
and the connection with Unruh’s temperature and Hawking radiation are an
active area of research due to the remarkable correspondence between causal-
ity and the modular Tomita–Takesaki theory [78–85], it would be interesting
to formulate in this context some sort of AQFEP statement beyond that
of Hessling.
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Finally, the work of Faraggi and Matone [86] is to be noted, where a sort
of mathematical equivalence postulate is introduced stating that all physical
systems can be connected by a coordinate transformation to the free system
with vanishing energy, uniquely leading to the quantum analog of the Hamil-
ton–Jacobi equation, which is a third-order nonlinear differential equation.
The interesting feature of their approach, which they carry on in both nonrela-
tivistic and relativistic domains, is the derivation of a trajectory representation
of quantum mechanics depending on the Planck length.

7. CONCLUSIONS

The first conclusion of this work is that considerations of equivalence
type in quantum field theories may well guide the abstract research in this
area toward the highly required feature of universality, which, being an
important form of unification, is among the ultimate purposes of meaningful
theoretical research. This may apply to the act of measuring generic field
operators, as was argued by D’Ariano [87] for the homodyne tomography
technique in quantum optics.

The second conclusion refers to the hope that Hawking and Unruh effects
are not only mathematical idealizations. In particular, their vacuum excitation
spectrum interpretation can be used for what one may call high-energy kine-
matical radiometry, at least as guiding principles in establishing rigorous
high-energy and astrophysical radiometric standards. Whether or not the
Unruh and Hawking effects really occur [88], they can be employed as a
sort of standard in relativistic quantum field radiometry.
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294 Rosu

14. S. Takagi, Prog. Theor. Phys. Suppl. 88, 1 (1986).
15. T. Jacobson, Phys. Rev. D 44, 1731 (1991).
17. L. P. Grishchuk, Ya. B. Zel’dovich, and L. V. Rozhanskii, Zh. Eksp. Teor. Fiz. 92, 20

(1987) [Sov. Phys. JETP 65, 11 (1987)].
18. T. H. Boyer, Phys. Rev. D 29, 1096 (1984); Sci. Am. 253, 56 (August 1985).
19. V. L. Ginzburg and V. P. Frolov, Usp. Fis. Nauk 153, 649 (1987) [Sov. Phys. Usp. 30,

1073 (1987)].
20. A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev, Theor. Math. Phys. 99, 470

(1994); Phys.-Uspekhi 39, 73 (1996).
21. V. L. Ginzburg and Yu. N. Eroshenko, Phys.-Uspekhi 33, 195 (1995); 39, 81 (1996).
22. P. Candelas and D. W. Sciama, Phys. Rev. D 27, 1715 (1983).
23. V. P. Frolov and D. M. Gitman, J. Phys. A 11, 1329 (1978).
24. J. F. Donoghue, B. R. Holstein, and R. W. Robinett, Gen. Rel. Grav. 17, 207 (1985).
25. G. ’t Hooft, J. Geom. Phys. 1, 45 (1984).
26. H. Kolbenstvedt, Eur. J. Phys. 12, 119 (1991).
27. W. G. Unruh, Phys. Rev. D 46, 3271 (1992).
28. N. Pinto-Neto and N. F. Svaiter, Europhys. Lett. 24, 7 (1993).
29. A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz. 94, 31 (1988).
30. B. F. Svaiter and N. F. Svaiter, Phys. Rev. D 46, 5267 (1992).
31. J. R. Letaw, Phys. Rev. D 23, 1709 (1981); J. Math. Phys. 23, 425 (1982).
32. J. R. Letaw and J. D. Pfautsch, Phys. Rev. D 22, 1345 (1980); 24, 1491 (1981).
33. G. Barton and A. Calogeracos, Proc. R. Soc. Lond. A 452, 1167 (1996).
34. W. Unruh, Phys. Rev. A 59, 131 (1999).
35. P. Chen, ed., Quantum Aspects of Beam Physics, World Scientific, Singapore (1999).
36. J. S. Bell and J. M. Leinaas, Nucl. Phys. B 212, 131 (1983).
37. J. S. Bell, R. J. Hughes, and J. M. Leinaas, Z. Phys. C 28, 75 (1985).
38. J. S. Bell and J. M. Leinaas, Nucl. Phys. B 284, 488 (1987).
39. J. Schwinger, Phys. Rev. 75, 1912 (1949).
40. S. Hacyan and A. Sarmiento, Phys. Rev. D 40, 2641 (1989).
41. S. R. Mane, Phys. Rev. D 43, 3578 (1991).
42. L. Parker and A. Raval, Phys. Rev. D 57, 7327 (1998).
43. C. H. Brans, Contribution to the Mexico meeting in honor of F. Hehl, gr-qc/9801029.
44. H. Rosu, Nuovo Cim. B 109, 423 (1994); 114, 107 (1999).
45. T. Nagatsuka and S. Takagi, Ann. Phys. 242, 292 (1995).
46. L. Sriramkumar and T. Padmanabhan, Class. Quant. Grav. 13, 2061 (1996).
47. F. Hinterleitner, Ann. Phys. 226, 165 (1993).
48. J. D. Cresser, J. Opt. Soc. Am. B 6, 1492 (1989).
49. D. N. Klyshko, Phys. Lett. A 154, 433 (1991).
50. V. P. Frolov and V. L. Ginzburg, Phys. Lett. A 116, 423 (1986).
51. K.-P. Marzlin and J. Audretsch, Phys. Rev. D 57, 1045 (1998).
52. C. Gabriel, P. Spindel, S. Massar, and R. Parentani, Phys. Rev. D 57, 6496 (1998).
53. R. Parentani and S. Massar, Phys. Rev. D 55, 3603 (1997).
54. S. Massar, R. Parentani, and R. Brout, Class. Quant. Grav. 10, 385 (1993).
55. A. Higuchi, G. E. A. Matsas, and C. B. Peres, Phys. Rev. D 48, 3731 (1993).
56. H. Ren and E. J. Weinberg, Phys. Rev. D 49, 6526 (1994).
57. G. E. A. Matsas, Gen. Rel. Grav. 26, 1165 (1994).
58. E. Bautista, Phys. Rev. D 48, 783 (1993).
59. R. D. Daniels, Phys. Lett. B 408, 52 (1997).
60. S. Massar and R. Parentani, Phys. Rev. D 54, 7426 (1996).
61. L. H. Ford, Phys. Rev. D 48, 776 (1993).



Relativistic Quantum Field Inertia 295

62. V. I. Man’ko and R. Vilela Mendes, IEEE Trans. Signal Proc., in press (1999); physics/
9712022.

63. A. Fedorova, M. Zeitlin, and Z. Parsa, physics/9902062, 9902063.
64. C. E. Heil and D. F. Walnut, SIAM Rev. 31, 628 (1989).
65. L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993); J. Phys. A 27, 5749 (1994).
66. L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55, 3898 (1997).
67. B. L. Hu and A. Matacz, Phys. Rev. D 49, 6612 (1994); B. L. Hu, gr-qc/9902064; Int. J.

Theor. Phys. (1999).
68. G. Gour and L. Sriramkumar, quant-ph/9808032.
69. H. Hessling, Nucl. Phys. B 415, 243 (1994).
70. V. Moretti, Class. Quant. Grav. 13, 985 (1996); Erratum 14, 825 (1997).
71. W. G. Unruh and N. Weiss, Phys. Rev. D 29, 1656 (1984).
72. R. Haag, Local Quantum Physics, Springer, Berlin (1992).
73. R. Haag, H. Narnhofer, and U. Stein, Commun. Math. Phys. 94, 219 (1984).
74. K. Fredenhagen and R. Haag, Commun. Math. Phys. 108, 91 (1987).
75. M. Shifman, Lecture given at the 1997 Yukawa International Seminar on Nonperturbative

QCD—Structure of the QCD Vacuum, Kyoto, Dec. 2–12, 1997.
76. G. Preparata, S. Rovelli, and S.-S. Xue, gr-qc/9806044.
77. S. Cacciatori et al., Phys. Lett. B 427, 254 (1998).
78. A. Connes and C. Rovelli, Class. Quant. Grav. 11, 2899 (1994).
79. B. Schroer, hep-th/9809017, 9710234.
80. D. Buchholtz, O. Dreyer, M. Florig, and S. J. Summers, math-ph/9805026.
81. M. Niedermaier, Nucl. Phys. B 535, 621 (1998); 519, 517 (1998).
82. I. Ojima, Lett. Math. Phys. 11, 73 (1986); Ann. Phys. 137, 1 (1981).
83. B. S. Kay, Commun. Math. Phys. 100, 57 (1985).
84. C. Lucchesi, hep-ph/9808435.
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